Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 514(7522): 372-375, 2014 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-25119032

RESUMO

Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and ß; hereafter IFN), which are key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5'-end (reviewed in refs 1, 2, 3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5'-diphosphates (5'pp). Genomes from mammalian reoviruses with 5'pp termini, 5'pp-RNA isolated from yeast L-A virus, and base-paired 5'pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5'pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5'pp. Such RNAs are found in some viruses but not in uninfected cells, indicating that recognition of 5'pp-RNA, like that of 5'ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system.


Assuntos
RNA Helicases DEAD-box/metabolismo , Difosfatos/metabolismo , Imunidade Inata , RNA Viral/química , RNA Viral/metabolismo , Reoviridae/genética , Reoviridae/imunologia , Animais , Pareamento de Bases , Sequência de Bases , Proteína DEAD-box 58 , Feminino , Genoma Viral/genética , Masculino , Camundongos , RNA Viral/genética , Reoviridae/fisiologia
2.
PLoS One ; 8(4): e62872, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653683

RESUMO

The innate immune system senses pathogens by pattern recognition receptors in different cell compartments. In the endosome, bacteria are generally recognized by TLRs; facultative intracellular bacteria such as Listeria, however, can escape the endosome. Once in the cytosol, they become accessible to cytosolic pattern recognition receptors, which recognize components of the bacterial cell wall, metabolites or bacterial nucleic acids and initiate an immune response in the host cell. Current knowledge has been focused on the type I IFN response to Listeria DNA or Listeria-derived second messenger c-di-AMP via the signaling adaptor STING. Our study focused on the recognition of Listeria RNA in the cytosol. With the aid of a novel labeling technique, we have been able to visualize immediate cytosolic delivery of Listeria RNA upon infection. Infection with Listeria as well as transfection of bacterial RNA induced a type-I-IFN response in human monocytes, epithelial cells or hepatocytes. However, in contrast to monocytes, the type-I-IFN response of epithelial cells and hepatocytes was not triggered by bacterial DNA, indicating a STING-independent Listeria recognition pathway. RIG-I and MAVS knock-down resulted in abolishment of the IFN response in epithelial cells, but the IFN response in monocytic cells remained unaffected. By contrast, knockdown of STING in monocytic cells reduced cytosolic Listeria-mediated type-I-IFN induction. Our results show that detection of Listeria RNA by RIG-I represents a non-redundant cytosolic immunorecognition pathway in non-immune cells lacking a functional STING dependent signaling pathway.


Assuntos
Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Listeria monocytogenes/metabolismo , Monócitos/metabolismo , RNA Bacteriano/genética , Receptores do Ácido Retinoico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Citosol/metabolismo , Citosol/microbiologia , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/citologia , Hepatócitos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Monócitos/citologia , Monócitos/microbiologia , Fosforilação , RNA Bacteriano/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Transdução de Sinais
3.
Antivir Ther ; 16(5): 751-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21817197

RESUMO

BACKGROUND: Upper respiratory tract infection is a frequent cause of morbidity worldwide. Although the course of infection is usually mild, it is responsible for enormous social and economic costs. Immunostimulation with bacterial extracts consisting of ribosomal RNA and proteoglycans, such as Ribomunyl, was introduced into the clinic in the 1980s as a new treatment concept, but did not achieve widespread application. Ribomunyl has been proposed to activate innate immunity, but the contribution of its RNA content as well as its antiviral potential has not been studied. METHODS: Peripheral blood mononuclear cells from healthy donors and immune cells from adenoids were incubated with Ribomunyl either by itself or formulated in a complex with cationic polypeptides such as poly-l-arginine or protamine, and induction of cytokines was quantified by ELISA. RESULTS: Ribomunyl in complex with either poly-l-arginine or protamine, but not on its own, was able to strongly induce interferon-α (P<0.01) and interleukin-12 (P<0.01) in peripheral blood mononuclear cells, whereas induced tumour necrosis factor-α and interleukin-6 levels were independent of the formulation. Comparable results were obtained in immune cells from adenoids, suggesting efficacy also in virus-affected tissue. Cell sorting, RNase digests and selective receptor expression show that the RNA in Ribomunyl acts as an agonist of Toll-like receptor (TLR)7 and TLR8. CONCLUSIONS: Ribomunyl is, in principle, able to potently induce antiviral interferon-α and interleukin-12 via TLR7 and TLR8, respectively, but only when formulated in a complex with cationic polypeptides.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Bactérias/farmacologia , Antivirais/farmacologia , Poliaminas/química , Tonsila Faríngea/efeitos dos fármacos , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/uso terapêutico , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/uso terapêutico , Antivirais/metabolismo , Antivirais/uso terapêutico , Arginina/química , Arginina/metabolismo , Citocinas/análise , Citocinas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Células HEK293 , Humanos , Imunização/métodos , Leucócitos Mononucleares/efeitos dos fármacos , Terapia de Alvo Molecular , Poliaminas/metabolismo , Polieletrólitos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/patologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/imunologia , Receptor 8 Toll-Like/metabolismo
4.
Nat Struct Mol Biol ; 17(7): 781-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20581823

RESUMO

RIG-I is a cytosolic helicase that senses 5'-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5'-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5'-ppp dsRNA 12-mer, with interactions involving 5'-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5'-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5'-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2'-OCH(3) RNA modifications on the interferon response.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/metabolismo , RNA de Cadeia Dupla/química , Receptores Imunológicos , Alinhamento de Sequência
5.
J Virol ; 83(12): 6269-78, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19339345

RESUMO

The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.


Assuntos
Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Dependovirus/fisiologia , Transdução de Sinais , Replicação Viral , Adenoviridae/genética , Adenoviridae/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Células HeLa , Humanos , Infecções por Parvoviridae/virologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...